

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

2D NMR Study on 4-O-Tetrahydropyranylepiisopropodophyllin

Qianrong Li^a; Xiaohan Peng^a; Qin Liu^b; Haigen Shen^b

^a Structure Research Laboratory, USTC, Hefei, Anhui, CHINA ^b Biological Department, USTC, Hefei, Anhui, CHINA

To cite this Article Li, Qianrong , Peng, Xiaohan , Liu, Qin and Shen, Haigen(1996) '2D NMR Study on 4-O-Tetrahydropyranylepiisopropodophyllin', Spectroscopy Letters, 29: 8, 1531 — 1538

To link to this Article: DOI: 10.1080/00387019608007143

URL: <http://dx.doi.org/10.1080/00387019608007143>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

2D NMR STUDY ON 4-O-TETRAHYDROPYRANYL-EPIISOPICROPODOPHYLLIN

Keyword: 2D NMR, podophyllotoxin derivative, 4-O-THP-epiisopicropodophyllin

Qianrong Li, Xiaohan Peng

Structure Research Laboratory, USTC^a, Hefei, Anhui 230026, CHINA

Qin Liu, Haigen Shen

Biological Department, USTC, Hefei, Anhui 230026, CHINA

ABSTRACT

A complete assignment of the two dimensional ¹H and ¹³C NMR spectra of the title compound, which is a key intermediate for preparation of podophyllotoxin derivatives, is presented. The proton signals have been assigned from DQF- COSY, TOCSY, ¹H-¹H coupling patterns, and by the comparisons of chemical shifts with those of similar podophyllum lignans. Complete ¹³C NMR assignments have been made from HMQC, HMBC and DEPT spectra. Further information on the stereochemistry of the molecule was obtained from 2D NOESY and NOE-difference techniques.

INTRODUCTION

In 1975, Aiyar and Chang¹ published the ¹H NMR spectral data of epiisopicrodophyllin (EIPP) in DMSO. Later, Rodrigo et al.² published the NMR data of the 4-O-methyl ether (MEIPP) in CDCl₃. On the other hand, 4-O-tetrahydropyranlypodophyllotoxin (THPP) was first obtained by Gensler³ but no NMR data for the structure of this ether was given. In this work, a detailed NMR analysis, including ¹H, ¹³C, DEPT spectra, 2D ¹H-¹H correlation (DQFCOSY and TOCSY), 2D ¹H-¹³C correlation (HMQC and HMBC), 2D NOE spectrum correlation (NOESY) and NOE-difference experiments was used for the structure elucidation of 4-O-tetrahydropyranlyepiisopicropodophyllin (THPEIPP).

^a USTC=University of Science & Technology of China

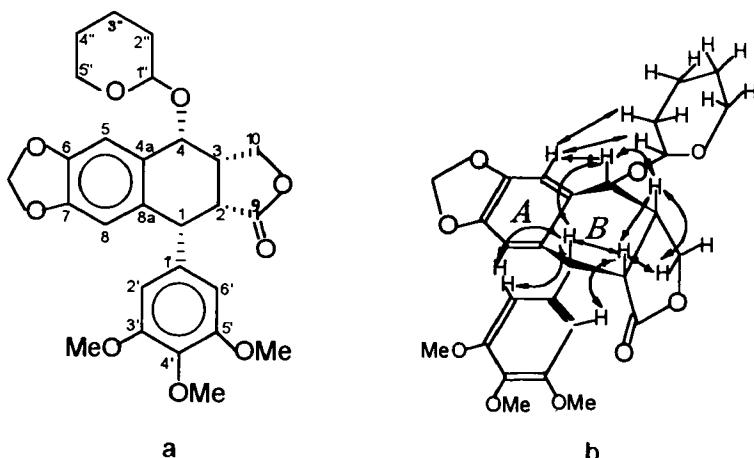


Fig. 1. The structure of THPEIPP

RESULTS AND DISCUSSION

The ^1H NMR spectrum of THPEIPP was assigned on the basis of chemical shifts, 2D COSY spectrum, ^1H - ^1H coupling patterns, relative peak areas and by the comparisons of the ^1H NMR data with those of MEIPP.

There are five signals at δ 6.835(1H), 6.454(1H), 6.425(2H), 3.836(3H) and 3.811(6H) which were readily assigned to H-5, H-8, H-2'6', 4'-OMe and 3'5'-OMe respectively on the basis of the relative intensity of the signals in the 1D spectrum and the lack of cross peaks in the 2D COSY(Fig.2) and TOCSY(Fig.3) spectra. For H-5 and H-8, they can be differentiated by the appearance of two cross peaks for H5-C4a and H8-C8a in the HMBC spectrum (listed in Table 2). Furthermore, the NOE observed from NOESY(Fig.5) and NOE difference spectrum (Fig.6) between the signals of H-5 and H-4 and between H-8 and H-1 gave full proof due to the proton pairs closing to each other in the space. This conclusion is consistent with other derivatives of podophyllotoxin⁴. The assignment of OCH_2O was quite straightforward, for it provided an easily recognizable ABq system at δ 5.946 ppm with no cross peaks in 2D COSY and TOCSY spectra. The H-1 and H-4 were readily identified as doublets at 4.159 and 4.588 ppm, because both of the protons presented strong cross peaks, as shown in Fig.2, caused by coupling with H-2(3.303 ppm) and H-3 (2.970 ppm) respectively. The two quartets at δ 4.497 ppm and 4.416 ppm were assigned to the unequal protons of

TABLE 1
¹H and ¹³C NMR Chemical Shifts and C-H Correlations of THPEIPP,
 and Comparison of the Major ¹H NMR Data with EIPP and MEIPP^a

¹ H NMR, δ(J)		position	THPEIPP (in CDCl ₃)			
EIPP (in DMSO)	MEIPP (in CDCl ₃)		¹ H NMR δ(J)	¹³ C NMR δ	DEPT -135	
4.66d	4.07d(3.3) 3.5m 3.5m 4.38d(5.8)	1	4.159d(5.07)	44.740	CH	
		2	3.303dd(9.70,5.16)	44.869	CH	
		3	2.970m	41.073	CH	
		4	4.588d(6.90)	74.508	CH	
		4a	-	131.509	C	
	7.14s	5	6.835s	107.196	CH	
		6	-	147.492	C	
		7	-	153.555	C	
		8	6.454s	109.824	CH	
		8a	-	146.741	C	
6.36s	6.53s 6.54s 6.90s	9	-	178.316	C	
		10 α	4.497dd(9.05,5.83)	70.211	CH ₂	
		10 β	4.416dd(9.41,7.14)	70.211	CH ₂	
		1'	-	138.786	C	
		2'6'	6.425s	105.721	CH	
		3'5'	-	153.233	C	
		4'	-	136.724	C	
		1"	4.520dd(6.47,2.44)	99.216	CH	
		2"	1.45m?1.69-1.92m?	30.357	CH ₂	
		3"	1.76-1.92m?	20.740	CH ₂	
6.10	5.93ABq(1.2) 3.89s 3.86s	4"	1.54m?	25.221	CH ₂	
		5"	3.970m,3.530m	64.337	CH ₂	
		OCH ₂ O	5.946ABq(1.37)	101.177	CH ₂	
		4'-OMe	3.836s	60.934	CH ₃	
3.63		3'/5'-OMe	3.811s	56.131	CH ₃	
		1	Ref.	this	work	

^a THPEIPP = 4-O-tetrahydropyranylepiisopicropodophyllin

MEIPP = 4-O-methylepiisopicropodophyllin

EIPP = episopicropodophyllin

H-10 α and H-10 β , both the signals gave two strong cross peaks in the COSY spectrum due to coupling with H-3(2.970ppm) and H-10 β or H-10 α respectively. A quartet at 3.303 ppm corresponded to H-2, which gave two strong cross peaks in the COSY, caused by coupling with H-1 and H-3. A multiplet at ca. 2.970 ppm can be assigned to H-3, which presented four strong cross peaks in the COSY, by coupling with H-2 and H-4 along with H-10. The remaining quartet at 4.520 ppm with 1 proton intensity, partially overlapped with that of H-10 α , and was very difficult to interpret. Fortunately, a strong cross peak appeared in the COSY, at 4.520 ppm and ca.1.45 ppm. The upfield signal (1.45 ppm, might be due to H-2") is the resonance region of the pyran ring protons. Therefore, the quartet at 4.520 ppm can be assigned to H-1" on the pyran ring, which is connected with two oxygen atoms. The full ¹H assignments are summarized in Table 1 and the coupling constants are included in

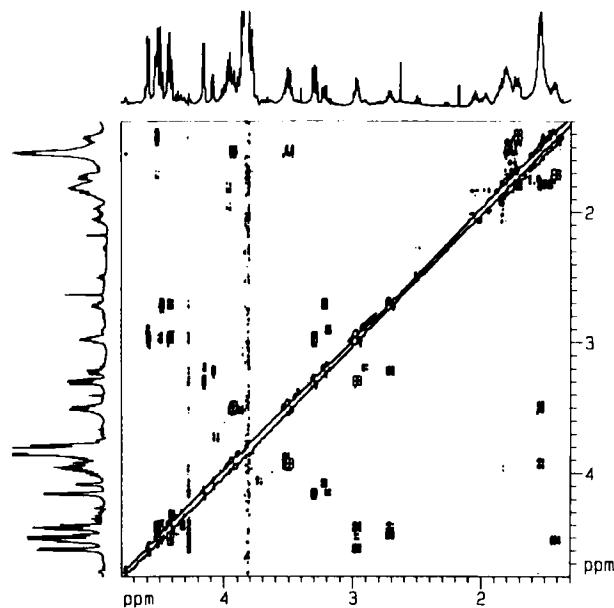


Fig. 2. 2D DQFCOSY spectrum

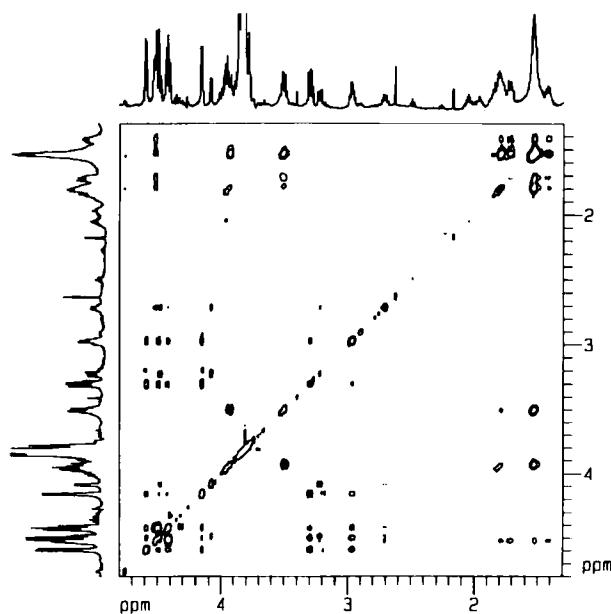


Fig. 3. 2D TOCSY spectrum

TABLE 2
Summary of Correlation for THPEIPP from Cross Peaks of
2D DQFCOSY, TOCSY, HMQC, HMBC and NOESY Spectra

DQFCOSY & TOCSY ^a		HMQC & HMBC ^b	NOESY
H1-H2	*H1-H10 α	H1-C1, C1', C2, C3, C2'6', C8, C4	H1-H2, H4, H8, H2'6'
H2-H3	*H2-H4	H2-C2, C1', C4	H2-H3, H10 β , H2'6'
H3-H4	*H2-H10 α	H3-C3, C4	H3-H4, H10 β
H3-H10 β	*H2-H10 β	H4-C4, C3, C2, C4a, C5, C10	H4-H5
H10 α -H10 β , α	*H4-H10 α	H5-C5, C4, C4a, C6, C7	H5-H1", H2"
H1"-H2"	*H4-H10 β	H8-C8, C6, C7, C8a	H8-H2'6'
H2"-H2"	*H1"-H3"	H10 α , β -C10, C4	H1"-H2", H4"
H4"-H5"	*H1"-H4"	OCH ₂ O-OCH ₂ O	H2"-H4"
H5"-H5"	*H2"-H5"	H2'6'-C2'6', C1, C1', C3'5', C4'	H3"-H4"
*H1-H3	*H3"-H5"	H1"-C1"	H5"-H1", H4", H5"
*H1-H4	*H1-H10 β	H2"-C2"	

^a The cross peaks labeled * only appear in TOCSY

^b The cross peaks labeled _____ only appear in HMBC

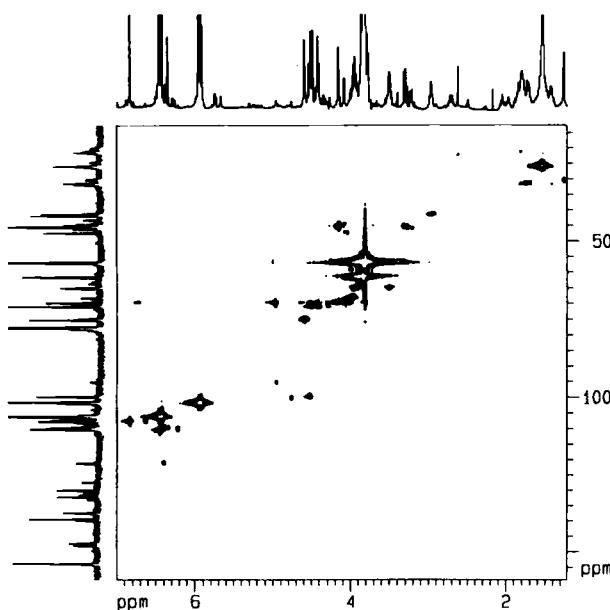


Fig. 4. 2D HMQC spectrum

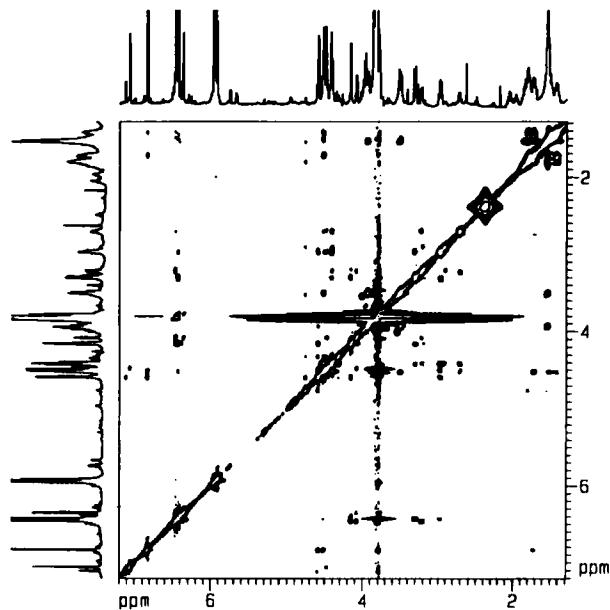


Fig. 5. 2D NOESY spectrum

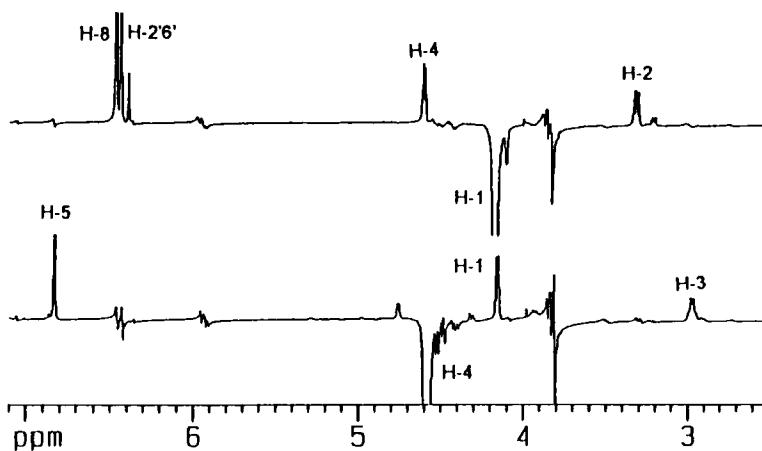


Fig. 6. NOE-DIF spectrum, irradiated at H-1(up) and H-4(down)

parentheses. However, a complete analysis for the protons on the pyranyl ring is not possible for the very similar coupling and close signals. A comparison of the major ¹H NMR data of three similar compounds is also included in the Table.

The above assignment for proton resonances can be used to assign the ¹³C resonances of the compound via heteronuclear correlation 2D experiments. The C-H correlations in Table 1 were obtained according to the HMQC (Fig.4) and DEPT-135 spectra, and by the comparisons of chemical shifts with those of podophyllotoxin stereoisomers or derivatives from the previous work⁴. The quaternary carbons could also be identified by the heteronuclear multiple bond correlation HMBC experiment shown in Table 2.

A further elucidation of the stereostructure of THPEIPP was obtained through a study of the 2D NOESY, that was used for the assignments of the proton pairs which are close to each other in the space, especially those connected with C-1, C-2, C-3 and C-4, which are related to the configuration and linked with biological activity.

There are twenty cross peaks in the NOESY spectrum as shown in Fig.5. The correlations of all the cross peaks are listed in Table 2 and some of them are shown in the structural formula (Fig.1 b) by the arrows. The correlations of H1-H2, H2-H3, H3-H4 and H3-H10b indicate that all the relations between C1 and C2, C2 and C3, and C3 and C4 are cis configurations. This conclusion was supported by their coupling constants (Table 1) and confirmed by the NOE-difference spectrum shown in Fig.6, as did NOE enhancements of H-2 and H-4 when H-1 was irradiated, and did of H-1 and H-3 when H-4 irradiated. Note that the cross peaks of H4-H5 and H1-H2'6' in NOESY (Fig.5) and the NOE observed between the signals of H-1 and H-4 in NOE-DIF spectrum (Fig.6) imply that the major conformation of the reduced ring B of the compound is in the boat form.

The THP group cannot rotate freely about the C-O bond and the plane of the ring is perpendicular to that of the ring B as shown in Fig.1(b), because of the appearance of the cross peaks of both H5-H1" and H5-H2", and no cross peaks of H10-H1" or H10-H2" in NOESY spectrum. The THP ring can exist in both chair and boat conformations with the EIPP substituent in an equatorial orientation, but the latter is dominant as the appearance of cross peaks of H1"-H4" and H3"-H4" in the NOESY spectra.

EXPERIMENTAL

All the NMR spectra were recorded for a 32 mg/ml CDCl₃ solution on a Bruker DMX 500 spectrometer with ¹H-¹³C-¹⁵N triple resonance probe at 300K. The chemical shifts of the solvent was used as an internal reference and set at 7.270 ppm for ¹H and 77.053 ppm for ¹³C relative to TMS.

1D ^1H and ^{13}C NMR spectra were acquired into 64K and 45K data points with spectral width of 3561.25 and 22727.27 Hz respectively. 20K scans were used for ^{13}C NMR. 2D DQFCOSY, NOESY and TOCSY spectra were observed in phase sensitive mode. For DQFCOSY, 512 t_1 increments were accumulated into 2K data points with 32 scans for each. NOESY spectra were taken with mixing time of 600 ms, 512 t_1 increments, 1K data points and 24 scans. 2K data points, 256 t_1 increments and 160 scans were used for acquisition of the TOCSY spectra with spinlock time of 61.5 ms.

The proton detected HMQC and HMBC were acquired with gradient pulses for selection. The spectral widths were 3561.25 Hz and 22637.97 Hz for proton and carbon respectively. Sine-squared window function, 90° shifted were applied over 1024 complex data points in the F2 dimension and over 256 complex data points in the F1 dimension. The HMBC experiment was set for multibond(^1H - ^{13}C) coupling of around 8Hz(long range coupling evolution time 50 ms) with a low-pass J-filter to suppress one-bond couplings of around 145 Hz.

The synthesis of the sample started from podophyllotoxin, which was reacted with dihydropyran to afford a 4-O-THP-podophyllotoxin. The latter was saponified to yield a hydroxy carboxylate, followed by acidification to give the all-cis($1\alpha,2\alpha,3\alpha,4\alpha$) product with epimerisation at C-3.

ACKNOWLEDGMENTS

We are happy to express our thanks to the Academia Sinica for this project and to Professor R.S.Ward of Swansea University in the UK for his kind help.

REFERENCES

1. Aiyar V.N. and Chang F.C., *J. Org. Chem.*, 1975, **40**: 2384.
2. Forsey S.P., Rajapaksa D., Taylor N.J. & Rodrigo R., *J. Org. Chem.*, 1989, **54**: 4280.
3. Gensler W.J. and Gatsonis C.D., *J. Org. Chem.*, 1966, **31**: 4004.
4. Pelter A, Ward R.S., Li Q. and Pis J., *Tetrahedron: Asymmetry*, 1994, **5**: 909.

Received: April 23, 1996

Accepted: July 2, 1996